DESIGNING A VISION SYSTEM: A Comprehensive Guide to the Technical Requirements for Building a Vision System for Your Unique Imaging Application

There are a number of factors that need to be considered when designing a vision system, including: the hardware platform, the operating system, the software and API, and the very things that make the vision system “see” – the camera and its lens. Although each aspect plays an important role in achieving desired results, the camera and lens are the essence of the vision system. As such, it is recommended that both the camera and the lens be selected as a pair based on overall system requirements. Here we discuss various elements of vision systems with a focus on the camera and lens.

Posted in: White Papers, Imaging, Medical, Optics, Photonics

The Evolution of ADAS: Testing Systems That Include Cameras, Radar, and Sensor Fusion

In Conjunction with SAE

On their own, test requirements for camera and radar technology are rapidly changing as they become more safety critical. Because these systems are increasingly reliant on sensor fusion techniques, the test requirements are growing even more complex at a fast rate. A test system built on a scalable and flexible architecture is the only way to make sure you can adapt as quickly as ADAS technologies and autonomous vehicle systems are evolving.

Posted in: Upcoming Webinars, Cameras, Test & Measurement

Local Situational Awareness Design and Military and Machine Vision Standards

Real-time video is playing an increasingly important role in a range of military local situational analysis (LSA) applications to help improve surveillance and intelligence of possible threats while keeping troops out of harm’s way.

Posted in: White Papers, White Papers, Defense, Imaging, Data Acquisition, Sensors

Imaging Detonations of Explosives

Using high-speed camera pyrometers to measure and map fireball/shock expansion velocities.

An effort has been made within the US Army Research Laboratory (ARL) to extract quantitative information on explosive performance from high-speed imaging of explosions. Explosive fireball surface temperatures are measured using imaging pyrometry (2-color 2-camera imaging pyrometer; full-color single-camera imaging pyrometer). Framing cameras are synchronized with pulsed laser illumination to measure fireball/shock expansion velocities, enabling calculation of peak air-shock pressures. Multicamera filtering at different wavelengths enables visualization of light emission by some reactant species participating in energy release during an explosion. Measurement of incident and reflected shock velocities is used to calculate shock energy on a target.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging

Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE)

Operating at higher frequencies than other types of radar produces tighter beams and finer resolution.

An accurate view of the physical world is frequently vital. For example, rotary wing aircraft pilots must have knowledge of the terrain in order to safely fly their aircraft. Therefore, systems capable of generating images of the environment of sufficient quality to facilitate the decision process are necessary. The product of such a system is illustrated in Figure 1.

Posted in: Briefs, TSP, TSP, Aerospace, Imaging

Get Optical Products to Market Faster Using Modern Virtual Prototyping

Companies developing cutting-edge lasers, optics, and imaging products face significant hurdles getting products to market ahead of competitors. Learn about a new way for optical and mechanical engineers to collaborate that’s changing the way leading companies develop optical products. Learn:

Posted in: White Papers, Imaging, Manufacturing & Prototyping, Lasers & Laser Systems, Optics

Will fog displays improve design processes?

Today’s lead INSIDER story addressed a new kind of 3D visualization: a shape-shifting fog display. Researcher and co-creator Diego Martinez said the technology enables new ways to collaborate, but the display will ultimately need to be “brought into the light, one step at a time, over years.” What do you think? Will fog displays improve design processes?

Posted in: Question of the Week, Displays/Monitors/HMIs

A Shape-Changing Display – Made from Fog

Researchers from the University of Sussex are the first to combine two cutting-edge visualization technologies in one: a fog screen and a shape-shifting display. The “MistForm” system, according to one of its creators, enables interaction capabilities that improve upon today’s virtual- and augmented-reality offerings.

Posted in: News, Displays/Monitors/HMIs, Imaging

Creating the Future: A Better Way to Map Terrain

Mark Skoog, an aerospace engineer at NASA's Armstrong Flight Research Center, led the development of new software that stores terrain data in a more efficient and accurate way. The achievement, Skoog says, opens the prospect of anyone – yes, anyone – being able to fly.

Posted in: News, News, Aerospace, Imaging, Sensors

Using Sensor Fusion to Analyze Laser Processing in Additive Manufacturing

Sensor: “A device that detects or measures a physical property and records, indicates, or otherwise responds to it.” A sensor is a device that detects a physical quantity and responds by transmitting a signal.

Posted in: Articles, Imaging, Manufacturing & Prototyping, Lasers & Laser Systems, Photonics, Lasers, Sensors and actuators, Additive manufacturing

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.