Special Coverage

Technique Provides Security for Multi-Robot Systems
Bringing New Vision to Laser Material Processing Systems
NASA Tests Lasers’ Ability to Transmit Data from Space
Converting from Hydraulic Cylinders to Electric Actuators
Automating Optimization and Design Tasks Across Disciplines
Vibration Tables Shake Up Aerospace and Car Testing
Supercomputer Cooling System Uses Refrigerant to Replace Water
Computer Chips Calculate and Store in an Integrated Unit
Electron-to-Photon Communication for Quantum Computing

Stop-Rotor Rotary Wing Aircraft

This aircraft eliminates the need for long runways or other large launch and recovery systems.

Some unmanned aircraft designs attempt to combine the vertical takeoff and landing (VTOL) and hover capabilities of a helicopter with the increased speed and range capabilities of fixed-wing airplanes. Stop-rotor “nose-sitter” configurations — so named because the aircraft takes off and lands from a nose-down orientation — may offer good hover efficiency and aerodynamic design, but can require complex mechanical systems. These designs can also suffer a significant loss in altitude during transition from helicopter to airplane mode, and involve uneven weight distributions, rendering the aircraft “top heavy” and unwieldy during takeoff and landing. Further, the counter-rotating fuselage and tail of some nose-sitter designs are less practical than aircraft designs with a conventional fuselage orientation and tail rotor. Tiltrotor configurations with tiltable rotating propellers also involve mechanically complex systems and decreased hover efficiency due to higher disk loading. “Tail-sitter” designs — so named because the aircraft takes off and lands from a tail-down orientation — are associated with poor hover efficiency due to high disk loading and an awkward 90-degree attitude change between hover and forward flight modes.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

External Aircraft Noise Reduction Liners

This technology strategically places acoustic liners on the external surface of the aircraft to reduce such engine noise.

NASA Langley Research Center, in collaboration with Boeing and Lockheed Martin, has developed a new external acoustic liner for aircraft noise reduction. While the acoustic liner can be placed on any external aircraft surface, one attractive application is for open-rotor noise reduction. Airframe manufacturers are considering open rotor engines for future aircraft designs as they provide significant fuel savings. However, open rotor engines have no nacelle and thus, do not allow the use of conventional nacelle liners for noise abatement. This technology strategically places acoustic liners on the external surface of the aircraft to reduce such engine noise.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

Silicon Nanoparticles Enable Energy-Collecting Windows

Photovoltaic cells are hidden in the window frame, blending invisibly into the built environment.

Technology that embeds silicon nanoparticles into efficient luminescent solar concentrators (LSCs) has been developed. The LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges, where small solar cells can be put in place to capture the energy.

Posted in: Briefs, Energy
Read More >>

In-flight Global Nonlinear Aerodynamics Modeling and Simulation

Potential applications include aircraft, spacecraft, watercraft, and self-driving cars and trucks.

NASA's Langley Research Center has developed an in-flight global nonlinear aerodynamics modeling and simulation system. The technology replaces the normal labor-intensive iterative process of repeated flight tests and combining locally valid models with a single flight and automatically developed globally valid model. The technology is highly accurate and efficient for developing global aerodynamic and thrust models for aircraft.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

Aqueous Solution Dispersement of Carbon Nanotubes

NASA’s Langley Research Center researchers have developed a novel method to disperse carbon nanotubes in aqueous solutions using chemical buffers. By avoiding the common use of surfactants to achieve dispersion, the researchers have provided a means to maintain biocompatibility of the carbon nanotubes, while also providing a means to functionalize the nanotube surfaces for specific biological and chemical activity. One particular example is the use of this approach to functionalize the surface with nano platinum catalysts to use as electrodes for fuel cells or biofuel cells. Additional surface functionality could provide use for biosensors or delivery of functionalized molecules for medical applications.

Posted in: Briefs, Materials
Read More >>

Aircraft Deicing Decision Support Tool (DST)

Smooth and efficient operation of the National Airspace System depends on timely execution of flight-related events. Weather can severely disrupt the carefully planned flight schedules at a hub airport and impact travelers through out the country. In particular, a snowstorm may cause substantial perturbation in the departure of aircraft due to the need for deicing prior to takeoff. The additional time needed for an aircraft to be deiced, including time in queue, is highly nonlinear and difficult to predict.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

Artificial “Wrist” Enables Design of Wearable Blood Pressure Monitors

This wearable device monitors blood pressure continuously, 24 hours a day.

Unfortunately, blood pressure (BP) measurements currently require the use of a cuff that temporarily stops blood flow. A wearable BP “watch” using today’s technology would squeeze the wrist every few minutes, making it impractical to use. A better method might gauge subtle pressure changes at the surface of the skin above one of the main wrist arteries — the radial artery — without regularly cutting off circulation. But before this new technology can be developed, there is a need to understand what the pressure inside a blood vessel looks like on the surface of the skin. This requires a physical model that can be used to test wearable devices in a laboratory.

Posted in: Briefs, Medical
Read More >>

Digital-to-Analog Transformation and Reconstruction of ECG Data

This technology allows rapid, automated, second interpretation of 12-lead ECG data.

The innovators at NASA Johnson Space Center have developed a new method and device for specialized digital-to-analog conversion (DAC) and reconstruction of multichannel electrocardiograms (ECGs), including 12-lead ECGs. Current devices do not have the functionality that allows for the transmission of stored digital ECG data collected from one manufacturer’s ECG machine to another for an automated second opinion. With this technology, the physician has the opportunity to compare results by transferring the ECG data to another ECG machine — regardless of location — when a patient’s results are difficult to interpret for a second opinion. The technology also allows for the use of less expensive 12-lead ECG front ends or analog-to-digital conversion (ADC) hardware that is advantageous when in remote locations or with patients who are mobile during research studies. The digital-to-analog transformation and reconstruction of ECG data technology is available for licensing.

Posted in: Briefs, Medical
Read More >>

Impedance Measurement Box

This tool provides single-point measurement of batteries.

The dependability of energy storage devices — particularly batteries — is becoming increasingly important to consumers, industry, and the military. As battery technology becomes more complex and users' expectations become more pronounced, there is a pressing need for highly accurate assessment techniques that can give state-of-health readings in conditions approaching real time.

Posted in: Briefs, Test & Measurement
Read More >>

Transducer-Actuator Systems for On-Machine Measurements and Automatic Part Alignment

These systems have applications in machine shops, and in automotive and aircraft parts and manufacturing.

When performing machine tool setup and maintenance operations, it is frequently necessary to use a position transducer to “sweep” a surface and establish its relationship to a machine. A machine operator or maintenance technician typically attaches a position indicator to one portion of a machine, and then sweeps the position transducer over the object of interest, while observing the indicator run-out. If necessary, multiple adjustments and re-checks are made to the position of the object to obtain the desired alignment condition.

Posted in: Briefs, Test & Measurement
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.